

ScrapQD’s documentation!

Table of Contents

	ScrapQD’s documentation!

	Introduction

	Getting Started

	ScrapQD

	GraphQL UI

	Executing with client

	Integrating with existing Flask app

	Sample Flask app

	Integrating scrapqd with existing app

	Test (for development)

	FAQs

Introduction

ScrapQD consists of query definition created for scraping web data using GraphQL-Core [https://github.com/graphql-python/graphql-core]
which is port of GraphQL.js [https://github.com/graphql/graphql-js].

Library intends to focus on how to locate data from website and eliminate backend process of crawling. So people can just have xpath and get data right away.

It supports scraping using requests [https://github.com/psf/request] for traditional websites and
selenium [https://github.com/baijum/selenium-python] for modern websites (js rendering).
Under selenium it supports Google Chrome and FireFox drivers.

ScrapQD library only uses lxml [https://lxml.de/parsing.html] parser and xpath [https://www.w3schools.com/xml/xpath_syntax.asp] used to locate elements.

Getting Started

How to install

pip install scrapqd

How to run the server standalone

You can run scrapqd graphql server standalone without any additional code with below command.
Flask [https://github.com/pallets/flask/] is used as server and localhost [http://127.0.0.1:5000/scrapqd].

python -m scrapqd

Flask uses 5000 as default port. You can change the port and host with below options.

python -m scrapqd --port 5001 --host x.x.x.x

ScrapQD

ScrapeQD consists of below components.

	GraphQL UI

	Query

	Query Type -> Document (consists of leaf type and group type)

	Group Type

	Leaf Type

	Parser

	Executor

GraphQL UI

GraphQL UI provides flexibility to write scrapqd query and test it.
GraphQL UI supports auto completion and query documentation to develop query faster.
You can access UI - localhost [http://127.0.0.1:5000/scrapqd].

UI is loaded with sample query and Sample page [http://127.0.0.1:5000/scrapqd/sample_page/] is accessible for practice.

You can pass custom template for the query ui.

	History - to view past 10 queries that was tested.

	Copy - Copy the content in the query window.

	Prettify - prettifies the graphql query.

	Show/Hide - Show or hides the result window.

	Query Variables - query variables editor to pass data to query when you execute.

[image: scrapqd ui]

Executing with client

from scrapqd.client import execute_sync

query = r"""
 query test_query($url: String!, $name: GenericScalar!) {
 result: fetch(url: $url) {
 name: constant(value: $name)
 summary: group {
 total_shown_expenses: regex(xpath: "//*[@id='exp-total']", pattern: "(\\d+)")
 }
 }
 }"""

query_variables = {
 "url": "http://localhost:5000/scrapqd/sample_page/",
 "name": "local-testing"
}
result = execute_sync(self.query, query_variables)

Integrating with existing Flask app

Sample Flask app

from flask import Flask

name = __name__
app = Flask(name)

@app.route("/")
def hello_world():
 return "<p>Hello, World!</p>"

Integrating scrapqd with existing app

from scrapqd.app import register_scrapqd
register_scrapqd(app,
 register_sample_url=True,
 redirect_root=True)

app: Flask application

register_sample_url: False will not register sample page url to Flask application. Default is True

redirect_root: Redirect root url to graphql ui if this is set to True. This will not reflect, if there is already root route defined as above example.

Test (for development)

	Clone the github repository

git clone https://github.com/dduraipandian/scrapqd.git

	create virtual environment to work

pip3 install virtualenv
virtualenv scrapqd_venv
source scrapqd_venv/bin/activate

	install tox

pip install tox

	run tox from the project root directory

	current tox have four python version - py37,py38,py39,py310

	check your python version

python3 --version

Python 3.9.10

	once you get your version (example: use py39 for 3.9) to run tox

tox -e py39

FAQs

	How to copy query from graphql ui to python code.

	you can normally copy code from ui to python code to execute using client.

	if you hav regex query, patterns needs to escaped in the python code. In such, use python raw strings [https://docs.python.org/3/library/re.html#raw-string-notation], where backslashes are treated as literal characters, as above example.

	How to suppress webdriver logs

	If you see webdriver logs like below, set WDM_LOG_LEVEL=0 as environment variable and run

[INFO] [97002] [2022-03-14T02:18:26+0530] [SCRAPQD] [/webdriver_manager/logger.py:log():26] [WDM] [Driver [/99.0.4844.51/chromedriver] ...]

	How to change log level for scrapqd library

	ERROR level is default logging. You can change this with SCRAPQD_LOG_LEVEL environment variable.

Query

Scrape Query can be created with query, group and leaf queries.

	
	Query Type
	
	fetch

	selenium

	
	Group Type
	
	group

	list

	
	Leaf Type
	
	constant

	text

	attr

	link

	query_params

	form_input

	regex

Sample Query

query test_query($url: String!, $name: GenericScalar!) {
 result: fetch(url: $url) {
 name: constant(value: $name)
 summary: group {
 total_emp_expenses: text(xpath: "//*[@id='emp-exp-total']", data_type: INT)
 total_shown_expenses: text(xpath: "//*[@id='exp-total']/span[2]", data_type: INT)
 total_approved_expenses: text(xpath: "//*[@id='emp-exp-approved']/span[2]", data_type: INT)
 }
 exp_details: list(xpath: "//div[@class='card']") {
 name: text(xpath: "//div[contains(@class,'expense-emp-name')]")
 amount: group {
 money: text(xpath: "//h6[contains(@class,'expense-amount')]/span[1]", data_type: INT)
 name: text(xpath: "//h6[contains(@class,'expense-amount')]/span[2]")
 }
 }
 }
}

Query variables

{
 "url": "http://localhost:5000/scrapqd/sample_page/",
 "name": "local-testing"
}

Query Type

Query type queries are used for crawling url using different executors and pass down the data to child queries Leaf type for further processing. They expect leaf queries as sub query.

fetch

	
fetch(url, headers={}, executor='requests', is_json_response=false, method='GET', cache=false)

	Fetch query will crawl the traditional websites.

	
url

	URL to crawl

	
headers

	
	sometimes websites need additional headers in the request. By default, system provides below headers. The given headers will be updated with default headers. So default system headers are constant which will be sent for all the request.

	User-Agent: from the data files. This can be changed using USER_AGET_DATA_FILE or USER_AGET_DATA config.

	Connection: keep-alive

	Upgrade-Insecure-Requests: 1

	Accept-Language: en-US,en;q=0.9

	Accept-Encoding: gzip, deflate, br

	Pragma: no-cache

	You might not need this for most website. API type urls might need other extra headers and other http methods.

	
executor

	
	Executors define how to crawl the url and how to process their response. By default system has “requests” executors which supports Requests library.

	Custom executors can be creating by extending Executor class.

	
is_json_response

	
	It is by default False. You have to set True if the url returns json data. Processing of json data is not supported as of now. This is for future enhancement. System will throw error if this is set to True.

	
method

	
	http method to use for the request.

	System uses GET by default. For website crawl you do not need to set this parameter.

	API type urls might need other http methods like POST.

	
cache

	
Note

This should be used in development period

	Fetch will be time consuming as it gets website data from internet. While developing the query, you may run the query multiple times. It will affect the development time.

	Setting cache = true will cache the result of the url for consequent same url.

	Setting ENV=DEVELOPMENT in config will enable cache for all the queries by default. Anything other than development, cache parameter is ignored.

selenium

	
selenium(url, browser=GOOGLE_CHROME, options={}, is_json_response=false, cache=false)

	Selenium query will crawl the modern websites with javascript rendering.

	
url

	URL to crawl.

	
browser

	System supports below browser.

	GOOGLE_CHROME

	FIREFOX

	
options

	Additional options to be used in crawling using selenium.

	xpath Selenium will wait this element to be present in the loaded webpage.

	wait_time Selenium will wait for above xpath target (wait_time) secs.

	
is_json_response

	It is by default False. You have to set True if the url returns json data. Processing of json data is not supported as of now. This is for future enhancement. System will throw error if this is set to True.

	
cache

	Similar to cache parameter in fetch query.

Group Type

Group queries process groups multiple leaf nodes and process multiple results of a xpath. They expect leaf or group queries as sub query.

	group

	list

group

Group query will group the leaf node output under group variable to returns result to client.
This will be helpful to group certain types of elements/data from the query without needing addition outside code.

amount: group {
 money: text(xpath: "//h6[contains(@class,'expense-amount')]/span[1]", data_type: INT)
 name: text(xpath: "//h6[contains(@class,'expense-amount')]/span[2]")
}

list

	
list(xpath)

	List query will help you to write sub-query to extract data from the parent and returns.
If the list xpath return multiple elements, sub-query applied on each item in the list.

	
xpath

	to locate element

Example

exp_details: list(xpath: "//div[@class='card']") {
 name: text(xpath: "//div[contains(@class,'expense-emp-name')]")
 amount: group {
 money: text(xpath: "//h6[contains(@class,'expense-amount')]/span[1]", data_type: INT)
 name: text(xpath: "//h6[contains(@class,'expense-amount')]/span[2]")
 }
}

Result

{
 "result": {
 "exp_details": [
 {
 "name": "Friedrich-Wilhelm, Langern",
 "amount": {
 "money": 8800,
 "name": "egp"
 }
 },
 {
 "name": "Sebastian, Bien",
 "amount": {
 "money": 3365,
 "name": "mkd"
 }
 },
 {
 "name": "Rosa, Becker",
 "amount": {
 "money": 6700,
 "name": "xof"
 }
 },
 {
 "name": "Ines, Gröttner",
 "amount": {
 "money": 8427,
 "name": "npr"
 }
 },
 {
 "name": "Clarissa, Bonbach",
 "amount": {
 "money": 1609,
 "name": "fjd"
 }
 },
 {
 "name": "Zbigniew, Stolze",
 "amount": {
 "money": 8789,
 "name": "ern"
 }
 },
 {
 "name": "Ines, Mentzel",
 "amount": {
 "money": 1750,
 "name": "srd"
 }
 }
],
 }
}

Leaf Type

Leaf nodes are final queries to get the value from html element such as text from above query. You can not provide another leaf query as sub query.

	constant

	text

	attr

	link

	query_params

	form_input

	regex

Data Types

Few leaf queries support data types. If the data type is given, the element content will be converted to the given data type and sent to client.
System supported below data types. Custom data types can be created as well.

	
TEXT

	Default data type.

	
RAW

	When the element text is extract, text might have extra whitespace. They are stripped away by default. When RAW data type is given, data will be sent as it is extracted from the element.

	
INT

	
	Data is converted to integer.

	Example

	1,024 -> 1024

	12K -> 12000 (k/K - thousand, m/M - million, b/B - billion)

	
FLOAT

	
	Data is converted to decimal.

Multi

Leaf nodes support multi parameter. Xpath will locate multiple elements. This parameter will help the system who to process and return to client.

	false Only first element will be processed and returned to the client.

	true All the elements will be processed. Result will be sent as array/list to client. If the query supports data_type parameter, data_type conversion will be applied on all elements.

When multi is set false, result format will be not same when it is set to true.

you can set NON_MULTI_RESULT_LIST to True to have same format on both cases in the config file.

constant

	
constant(value)

	Constant query will give back results to client as hard coded in the query or value passed from query variables.

	
value

	Non null value in the query or can be passed from query variable as from the example.

name: constant(value:"local-testing")

text

	
text(xpath, data_type: TEXT, multi: false)

	Text query will get the content of the given element. Text does not represent that it will return text. It simply denotes that it will extract text from element.

	
xpath

	Path to locate element

	
data_type

	Data type to return

	
multi

	when xpath matches multiple elements,

	False Processes first element

	True Processes all elements

Example

total_emp_expenses: text(xpath: "//*[@id='emp-exp-total']", data_type: INT)

attr

	
attr(xpath, name=null, multi=false)

	Element will have multiple attributes as below. Attr query will help to fetch all of them or specified one. Data-hovercard-type, href are attributes on the example element. It will extract attributes value as key, value pair. Key as name, value as value of the attribute.

	
name

	
	If the name is not given, it will extract all the attributes.

	For example, if the name = ‘href’ given, it will get “{href: /abcxcom}” mapping.

	
multi

	when xpath matches multiple elements,

	False Processes first element

	True Processes all elements

Example

approval_id: attr(xpath: "//button[contains(@class, 'expense-approve')]", name: "id")

link

	
link(xpath, base_url=null, multi=false)

	In html, anchor <a> tag defines link to another web page. With link query, you can get entire url with ease.
There are times websites use relative url.

Link query construct full url from the requested url automatically. You can override the parent url with base_url parameter in the query.

	
xpath

	Path to locate element

	
base_url

	Custom url to create absolute url

	
multi

	when xpath matches multiple elements,

	False Processes first element

	True Processes all elements

Example

website : link(xpath:"//a[contains(@class, 'site-link')]")

query_params

	
query_params(xpath, name: null, multi: false)

	When you want to extract query parameter from url in anchor tag or any element has url type content,
you can use query_params query.

	
xpath

	Path to locate element

	
name

	
	If the name is not given, it will extract all the query parameters in the url.

	For example, if the name = ‘product’ given, it will get “{product: xyzcourse}” mapping.

	
multi

	when xpath matches multiple elements,

	False Processes first element

	True Processes all elements

Example

user_id: query_params(xpath:"//a/@href", name: "user")

Result

regex

	
regex(xpath, pattern, source="TEXT", multi: false)

	Regex will be used on the located element using xpath and returns the result.

	
xpath

	Path to locate element

	
pattern

	Regular expression pattern to match and it will be used in re.findall from python to extract data.

	
source

	Regular expression can be applied on located element’s content or element’s source html itself.

	text Regex will be applied on element’s content. This is default value.

	html Regex will be applied on element’s html.

	
multi

	when xpath matches multiple elements,

	False Processes first element

	True Processes all elements

Example

total_shown_expenses: regex(xpath: "//*[@id='exp-total']", pattern: "(\\d+)")

Result

"total_shown_expenses": [
 "40"
]

form_input

	
form_input(xpath, name: null, multi: false)

	Form input query will help you to extract input elements name, value pair from form element.

	
xpath

	Path to locate form element

	
name

	
	If the name is not given, it will extract all the input elements under the form.

	If the name is given, it will get input element with the given name.

	
multi

	when xpath matches multiple elements,

	False Processes first element

	True Processes all elements

Example

Html

<form class="requestParams" id="apiAttr">
 <input name="rlz" value="1C5CHFA_enIN991IN991" type="hidden">
 <input name="tbm" value="lcl" type="hidden">
 <input name="sxsrf" value="APq-WBu3vzrA9-WQU_Mp0Zs9aq2a-PQlJg:1644327612221" type="hidden">
 <input value="vHICYpKHDaWXseMP57uWuA4" name="ei" type="hidden">
 <input value="AHkkrS4AAAAAYgKAzF3dfuu_a7YROtX7wSMb404M2sTE" disabled="true" name="iflsig" type="hidden">
</form>

Query

meta_data: form(xpath: "//form[@class='requestParams']", name: "sxsrf")

Query Fields

Query fields are GraphQL fields. scrapqd.gql has all the graphql related implementation. Refer GraphQL documentation [https://graphql-core-3.readthedocs.io/en/latest/] for more information.

Query type, Leaves type and group are categorized in scrapqd based on their role. But for graphql all the fields are created in same manner.

How to create query fields

Query fields are creating using GraphQLField attaching to resolver function. Resolver function will be invoked by graphql to process the query.

Resolver function

	
resolver(parser: Parser, info: ResolveInfo, xpath, **kwargs)

	Resolver function for the graphql field.

	
parser

	Parser instance passed down from parent query.

	
info

	GraphQLResolveInfo instance which gives resolver information.

	
xpath

	path to locate node(tag).

	
kwargs

	any additional parameters defined in the GraphQL field.

GraphQL Field

	
class Field

	GraphQL field class is used to create scrapqd query

	
type

	GraphQL field type. Mostly GenericScalar type is used for fields in the scrapqd library.

	
args

	Dictionary of arguments for the field in query ex: xpath, name.
This should be argumented in resolver function above.

	
resolve

	resolver function which will be invoked while querying. Above resolver function should be given here.

	
description

	This description will be shown in the graphql ui for documentation.

Example: Text field

Resolver function

@with_error_traceback
def resolve_text(parser: Parser, info: ResolveInfo,
 xpath, data_type=const.DATA_TYPE_DEFAULT_VALUE, multi=const.MULTI_DEFAULT_VALUE):
 """Extracts node(tag) content using given XPath.

 :param parser: Parser instance passed down from parent query.
 :param info: GraphQLResolveInfo instance which gives resolver information.
 :param xpath: path to locate node(tag).
 :param data_type: Extracted text will be always in text format. When the data type is provided,
 content is converted to that format and returned to the client.
 Accepted data types:

 - text (default)
 - int
 - float

 :param multi: by default, it is set to False. Thus, when the given xpath locates multiple nodes,
 it returns first node value. if it is set `true`, it will return all the node values" \
 as list.Given data type is applied to all the nodes individually.
 :return:

 - text - when multi is set to False, This option can be overridden to return list with single value using `NON_MULTI_RESULT_LIST`.
 - List - when multi is set to True
 """
 key = get_key(info)
 parser.datatype_check(key, data_type)
 result = parser.extract_text(key=key, multi=multi, xpath=xpath)
 result = parser.data_conversion(result, data_type)
 result = parser.get_multi_results(multi, result)
 parser.caching(key, result)
 return result

Query Field

text = Field(GenericScalar,
 args={
 'xpath': Argument(NonNull(String), description=const.xpath_desc),
 'data_type': Argument(DataTypeEnum, description="data type which should be converted"),
 'multi': Argument(Boolean, description=const.multi_desc),
 },
 resolve=resolve_text,
 description="Extracts text content from the give xpath")

Executor

Executor is a crawler engine to scrape data. Any custom executor extends Executor interface and implements abstract method.

	Executor Interface

	Requests

	
	Selenium
	
	Selenium Driver

	Selenium Browser

	Selenium Executor

Executor Interface

Understanding executor interface is crucial to understand default executors and creating custom executors.

	
class scrapqd.fetch.interface.Executor(url, method='get', headers=None, response_type=None)

	Interface for Executor implementation

This class is exported only to assist people in implementing their own executors for crawling
without duplicating too much code.

	
property success_status_code

	Default success code for the request. Default success codes are [200].

	Returns

	List

	
get_payload(payload)

	Creates payload for http request.

	Parameters

	payload – Additional payload argument for request.

	Returns

	Dict

	
get_default_headers()

	Get user-agent and constructs other default headers for the request.

	User-Agent: from the data files.

	Connection: keep-alive

	Upgrade-Insecure-Requests: 1

	Accept-Language: en-US,en;q=0.9

	Accept-Encoding: gzip, deflate, br

	Pragma: no-cache

	Returns

	Dict

	
get_response_type()

	Gets response type from the request response.

	Returns

	String

	
get_headers()

	Constructs headers to be applied to the request from default headers and user provided headers.
User provided headers will override default headers.

	Returns

	Dict

	
get_response_content()

	gets response content from processed request.

	Returns

	
	json If the response type is json

	html If the response type is text/html

	
execute(**kwargs)

	Executes crawl method and gets http response from web.

	Parameters

	kwargs – Additional keyword arguments for extensibility.

	Raises

	Exception – Re-raises the exception occurred in the block for client to capture and handle

	
abstract get_response_url()

	Gets response url. It should be the final url after redirect (if any).

	Returns

	String

	
abstract get_response_headers()

	Gets http response headers

	Returns

	Dict

	
abstract is_success()

	Method definition to identify the request is successful or not.
By default, status_code == 200 is considered as success.

	Returns

	Boolean

	
abstract get_response_text()

	Gets response text.

	Returns

	String

	
abstract get_response_json()

	Gets response as json.

	Returns

	Dict

	
abstract get_status_code()

	Gets response status code of the http request made.

	Returns

	integer

	
abstract crawl(url, method='get', headers=None, **kwargs)

	Crawls given url from web. This method should return only http response from the library
without any further processing of the response.

	Parameters

	
	url – URL to crawl

	method – Http method which should be used to crawl

	headers – Additional headers for executor. Some websites need addition headers to make request.
System add below request headers by default. These headers can be overridden using
header argument.

	User-Agent: from the data files.

	Connection: keep-alive

	Upgrade-Insecure-Requests: 1

	Accept-Language: en-US,en;q=0.9

	Accept-Encoding: gzip, deflate, br

	Pragma: no-cache

	kwargs – Additional keyword arguments to support executor.

	Returns

	Http response

Requests

Requests uses requests library for executing requests and implements parent abstract methods.

class Requests(Executor):
 def get_response_url(self):
 return self.response.url

 def get_response_headers(self):
 return dict(self.response.headers)

 def get_status_code(self):
 return self.response.status_code

 def get_response_text(self):
 return self.response.content

 def get_response_json(self):
 return self.response.json()

 def is_success(self):
 status_code = self.get_status_code()
 return status_code in self.success_status_code

 def crawl(self, url, headers=None, method="get", **kwargs):
 return requests.request(self.method, self.url, headers=headers, **kwargs)

Selenium

Selenium Driver

SeleniumDriver is the generic implementation for crawling using selenium.

	
class scrapqd.executor.selenium_driver.selenium.SeleniumDriver

	Internal selenium driver implementation for all the browser types

	
wait_load(xpath, wait_time)

	Waits for browser to load specific element in the given url. If the xpath is not given,
selenium will wait for the document to be ready.

	Parameters

	
	xpath – Element to wait

	wait_time – Wait time in seconds for the element to present in the web page.

	
fetch(url, **kwargs)

	Fetches web page for the url

	Parameters

	
	url – url to crawl

	kwargs –
	wait Wait time in seconds for the element in the web page.

	xpath Element to wait. If this parameter is not given, selenium will wait for the document

to be ready till wait time.

	
get_response_headers()

	This executes javascript in the browser to get http response headers.

	Returns

	Dict

	
get_current_url()

	Gets the current url after redirect (if any).

	Returns

	String

	
get_page_source(url, **kwargs)

	Returns page source of the url

	Parameters

	
	url – url to crawl

	kwargs –
	wait Wait time in seconds for the element in the web page.

	xpath Element to wait. If this parameter is not given, selenium will wait for the

document to be ready till wait time.

	Returns

	HTML Web page string

	
clean_up()

	Quits browser and sets None, when this method is called

	
classmethod get_executable_path(browser, **kwargs)

	Gets browser executable from repository using webdriver_manager.

	Parameters

	
	browser – Name of the browser

	kwargs – Webdriver_manager options for the browser to download executable.

	Returns

	BrowserDriver

Selenium Browser

GoogleChrome, Firefox browsers are implemented currently. GoogleChrome is given as example here.

	
class scrapqd.executor.selenium_driver.browsers.GoogleChrome

	Creates Google Chrome type driver

	
classmethod create_browser()

	Returns headless Google browser object

Selenium Executor

Selenium executor is used to crawl modern webpages which uses javascript rendering (client-side rendering).

class Selenium(Executor):
 """SeleniumExecutor is class a generic processor (facade) for all browsers and
 implements all abstract method from `Executor` class."""

 def __init__(self, url, **kwargs):
 super().__init__(url, **kwargs)
 self._response_headers = {}
 self._current_url = None

 def get_response_url(self):
 if not self._current_url:
 logger.error("Not able to get current_url for %s from selenium", self.url, exc_info=True)
 return self.url
 return self._current_url

 def is_success(self):
 return True

 def get_response_text(self):
 return self.response

 def get_response_json(self):
 if isinstance(self.response, str):
 try:
 self.response = json.loads(self.response)
 except Exception:
 logger.exception("Not able to get convert to json data %s", self.url, exc_info=True)

 return self.response

 def get_status_code(self):
 return 200

 def get_response_headers(self):
 return self._response_headers

 def crawl(self, url, method="get", headers=None, **kwargs):
 """"Selenium crawl gets browser from browser factory and crawls the url"""
 browser_name = kwargs.get("browser", "GOOGLE_CHROME")
 browser = BrowserFactory().get(browser_name)()
 response = browser.get_page_source(url, **kwargs)
 self._response_headers = browser.get_response_headers()
 self._current_url = browser.get_current_url()
 return response

Parser

Parser is used in the GraphQL query to parse the html. Current system supports xpath in Lxml parser.

Library does not support Beautiful soup as it slower than lxml parser and Selector parsing is comparatively slower than xpath.

	Lxml

Lxml

	
class scrapqd.gql_parser.lxml_parser.LXMLParser(raw_html=None, html_tree=None)

	This is concerete implementation for lxml gql_parser to parse html text.

	
xpath_element(element, xpath=None, **kwargs)

	Extracts target node using xpath from given html element.

	Parameters

	
	element – Html element.

	xpath – Xpath to locate the elements.

	kwargs – Additional keyword arguments for extensibility.

	Returns

	List[HTMLElement]

	
xpath_text(element, xpath, **kwargs)

	Extracts text for given xpath.

	Parameters

	
	element – Html element.

	xpath – Xpath to locate the elements.

	kwargs – Additional keyword arguments for extensibility.

	Returns

	List[String]

	
extract_element_source_text(element)

	Extracts source html content

	Parameters

	element – Html element.

	Returns

	String

	
extract_text(xpath, **kwargs)

	Extracts text content from element.

	Parameters

	
	xpath – Xpath to locate the elements.

	kwargs – Additional keyword arguments for extensibility.

	Returns

	List[String]

	
extract_elements(xpath, **kwargs)

	Extracts nodes from given html element.

	Parameters

	
	xpath – Xpath to locate the elements.

	kwargs – Additional keyword arguments for extensibility.

	Returns

	List[HTMLElement]

	
extract_attr(xpath, **kwargs)

	Extracts attributes from the html element.

	Parameters

	
	xpath – Xpath to locate the elements.

	kwargs – Additional keyword arguments for extensibility.

	Returns

	List[Dict]

	
extract_form_input(xpath, **kwargs)

	Extracts form inputs using given xpath. Method expects xpath to locate form node.

	Parameters

	
	xpath – Xpath to locate the elements.

	kwargs – Additional keyword arguments for extensibility.

	Returns

	List[Dict]

Settings

ScrapQD uses below default configuration to function properly. Below configs can be overridden by user config.
Default config is located here [https://github.com/dduraipandian/scapqd/blob/sphinx_doc/scrapqd/settings/_default_config.py].

	
	Config
	
	APP_NAME

	CRAWLERS

	LEAVES

	QUERY_FIELDS

	BROWSERS

	DATATYPE_CONVERSION

	NON_MULTI_RESULT_LIST

	LOCAL_CACHE_TTL

	USER_AGET_DATA_FILE

	USER_AGET_DATA

	CHROMIUM_VERSION

	GECKODRIVER_VERSION

	How to create config

Config

APP_NAME

Default app name is ScrapQD. You can change this from config.

CRAWLERS

Requests and Selenium are system crawlers. If the defines customer executor, it needs to defined in the config.

LEAVES

Application owner can define custom leaves for their use case and provide in config to use in the query. Leaves are explained here.

QUERY_FIELDS

Application owner can define additional query fields (ex: puppeteer) and provide in the config. Queries are explained here.

BROWSERS

System uses GOOGLE_CHROME, FIREFOX browser in selenium to crawl modern webpages (javascript rendering). Custom browser can be created using Browser class and update this configuration.

DATATYPE_CONVERSION

Additional custom data type conversion mapping for the application.

NON_MULTI_RESULT_LIST

Config whether to send result as List or return single element when multi=False in the leaf nodes. You can read more from here.

LOCAL_CACHE_TTL

Fetch results are cached in local memory to speed up development. However, lifetime of the cache will be 10 minutes by default.
You can update this config to change ttl of cache. You can read more about this here.

USER_AGET_DATA_FILE

User-Agent is added to each request headers while using fetch query.
ScrapQD library has set of latest user agents in the file to load.

You can override them if you have your own user-agent files. Each user agent entry should on new line.

Note

Best to keep user-agent updated with latest agents on regular basis. Sites might return different format for older user agents.

USER_AGET_DATA

You can set this as list of user agents. System will use this and ignore USER_AGET_DATA_FILE config.

CHROMIUM_VERSION

System downloads latest version on chromium engine. You can set this to use the same version. Latest version will be downloaded by default.

GECKODRIVER_VERSION

If you are using firefox browser, you can set this to use specific gecko driver version. Otherwise latest version will be used.

DEFAULT_BROWSER

GOOGLE_CHROME is the default browser used in the library. You can update this to change to “FIREFOX”.

How to Create config

You can add additional LEAVES, CRAWLERS, QUERY_FIELDS and DATATYPE_CONVERSION. But you can not override the system config.

You can override rest of the configs. You can create the file with configs as here [https://github.com/dduraipandian/scapqd/blob/sphinx_doc/scrapqd/settings/_default_config.py] and set SCRAPQD_CONFIG environment variable.

Example:

Your project files are under google_search and you have your config /google_search/configuration/scrapqd_config.py.

Your environment variable should be

SCRAPQD_CONFIG=configuration.scrapqd_config

How to Guide

Contents

	How to Guide

	How to add custom executors to system

	How to add new leaves to system

	How to add additional data type

	How to add browsers to system

How to add custom executors to system

	Understand Executor Interface

	Create your custom executor similar to Requests or Selenium.

	Add to the config - CRAWLERS. Example: Puppeteer

from crawler.executors import Puppeteer, SeleniumOther

CRAWLERS = {
 "PUPPETEER": Puppeteer,
 "SELENIUM_OTHER": SeleniumOther
}

	Override config

	Restart your application

	You should be able to use select_options as leaf query from the graphql ui.

How to add new leaves to system

	Understand Query fields

	Create your custom field similar to Example text field.

	Add to the config - LEAVES. Example: select_options. It should be dict(name: field object).

from crawlers.fields import select_options

LEAVES = {
 'select_options': select_options
}

	Override config

	Restart your application

	You should be able to use select_options as leaf query from the graphql ui.

How to add additional data type

	Understand Data Type

	Create your data type conversion function.

Function should accept one value to process and return one value after conversion. Example function to boolean data conversion.

def boolean(value):
 if isinstance(value, int) or isinstance(value, float):
 value = False if value == 0 else True
 elif isinstance(value, bool):
 pass
 elif isinstance(value, str):
 if value.isdigit():
 value = False if float(value) == 0 else True
 else:
 try:
 value = float(value)
 value = False if value == 0 else True
 except:
 value = False if value == 'false' else True
 elif value is not None:
 value = True
 else:
 value = False
 return value

	Add to the config - DATATYPE_CONVERSION. Example: boolean. It should be dict(name: function).

from crawlers.data_types import boolean

LEAVES = {
 'boolean': boolean
}

	Override config

	Restart your application

	You should be able to use boolean as data type in the query.

How to add browsers to system

	Understand Browser implementation.

	Create your custom browser similar to GoogleChrome.

	Add to the config - BROWSER. Example: chromium. It should be dict(name: field object).

from crawlers.browsers import chromium

LEAVES = {
 'CHROMIUM': chromium
}

	Override config

	Restart your application

	You should be able to use CHROMIUM in the browser with selenium query.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	args (Field attribute)

 	
 	
 attr()

 	built-in function

B

 	
 	base_url

 	browser

 	
 built-in function

 	attr()

 	constant()

 	fetch()

 	form_input()

 	link()

 	list()

 	query_params()

 	regex()

 	resolver()

 	selenium()

 	text()

C

 	
 	cache, [1]

 	clean_up() (scrapqd.executor.selenium_driver.selenium.SeleniumDriver method)

 	
 constant()

 	built-in function

 	
 	crawl() (scrapqd.fetch.interface.Executor method)

 	create_browser() (scrapqd.executor.selenium_driver.browsers.GoogleChrome class method)

D

 	
 	data_type

 	
 	description (Field attribute)

E

 	
 	execute() (scrapqd.fetch.interface.Executor method)

 	executor

 	Executor (class in scrapqd.fetch.interface)

 	extract_attr() (scrapqd.gql_parser.lxml_parser.LXMLParser method)

 	
 	extract_element_source_text() (scrapqd.gql_parser.lxml_parser.LXMLParser method)

 	extract_elements() (scrapqd.gql_parser.lxml_parser.LXMLParser method)

 	extract_form_input() (scrapqd.gql_parser.lxml_parser.LXMLParser method)

 	extract_text() (scrapqd.gql_parser.lxml_parser.LXMLParser method)

F

 	
 	
 fetch()

 	built-in function

 	fetch() (scrapqd.executor.selenium_driver.selenium.SeleniumDriver method)

 	
 	Field (built-in class)

 	FLOAT

 	
 form_input()

 	built-in function

G

 	
 	get_current_url() (scrapqd.executor.selenium_driver.selenium.SeleniumDriver method)

 	get_default_headers() (scrapqd.fetch.interface.Executor method)

 	get_executable_path() (scrapqd.executor.selenium_driver.selenium.SeleniumDriver class method)

 	get_headers() (scrapqd.fetch.interface.Executor method)

 	get_page_source() (scrapqd.executor.selenium_driver.selenium.SeleniumDriver method)

 	get_payload() (scrapqd.fetch.interface.Executor method)

 	get_response_content() (scrapqd.fetch.interface.Executor method)

 	
 	get_response_headers() (scrapqd.executor.selenium_driver.selenium.SeleniumDriver method)

 	(scrapqd.fetch.interface.Executor method)

 	get_response_json() (scrapqd.fetch.interface.Executor method)

 	get_response_text() (scrapqd.fetch.interface.Executor method)

 	get_response_type() (scrapqd.fetch.interface.Executor method)

 	get_response_url() (scrapqd.fetch.interface.Executor method)

 	get_status_code() (scrapqd.fetch.interface.Executor method)

 	GoogleChrome (class in scrapqd.executor.selenium_driver.browsers)

H

 	
 	headers

I

 	
 	info

 	INT

 	
 	is_json_response, [1]

 	is_success() (scrapqd.fetch.interface.Executor method)

K

 	
 	kwargs

L

 	
 	
 link()

 	built-in function

 	
 	
 list()

 	built-in function

 	LXMLParser (class in scrapqd.gql_parser.lxml_parser)

M

 	
 	method

 	
 	multi, [1], [2], [3], [4], [5]

N

 	
 	name, [1], [2]

O

 	
 	options

P

 	
 	parser

 	
 	pattern

Q

 	
 	
 query_params()

 	built-in function

R

 	
 	RAW

 	
 regex()

 	built-in function

 	
 	resolve (Field attribute)

 	
 resolver()

 	built-in function

S

 	
 	
 selenium()

 	built-in function

 	
 	SeleniumDriver (class in scrapqd.executor.selenium_driver.selenium)

 	source

 	success_status_code (scrapqd.fetch.interface.Executor property)

T

 	
 	TEXT

 	
 text()

 	built-in function

 	
 	type (Field attribute)

U

 	
 	url, [1]

V

 	
 	value

W

 	
 	wait_load() (scrapqd.executor.selenium_driver.selenium.SeleniumDriver method)

X

 	
 	xpath, [1], [2], [3], [4], [5], [6]

 	
 	xpath_element() (scrapqd.gql_parser.lxml_parser.LXMLParser method)

 	xpath_text() (scrapqd.gql_parser.lxml_parser.LXMLParser method)

 nav.xhtml

 Table of Contents

 		
 ScrapQD’s documentation!

_static/file.png

_static/minus.png

_static/scrapqd_ui.png
ScrapQD @ ‘ Prettify ’ ‘ Copy ’ ‘ History

1v query test_query($url: String!, $name: GenericScalar!) {

2v
g
4v
5
6
7
8
9v
10
11
12
13
14
15
16
17

AP WN P

result: fetchCurl: $url) {
name: constant(value: $name)
summary: group {
total_emp_expenses: text(xpath: "//*[@id="emp-exp-tc
total_shown_expenses: text(xpath: "//*[@id="exp-tota
total_approved_expenses: text(xpath: "//*[@id='emp-e
}
exp_details: list(xpath: "//div[@class="card']") {
name: text(xpath: "//div[contains(@class, 'expense-en
amount: group {
money: text(xpath: "//h6[contains(@class, 'expense-
name: text(xpath: "//h6[contains(@class, 'expense-c
X
}
}
}

QUERY VARIABLES

{

}

"url": "http://localhost:5000/sample_page/",
"name": "local-testing"

v i

Hide ‘ < Docs

"data": {
"result": {
"name": "local-testing",
"summary": {
"total_emp_expenses": 309,
"total_shown_expenses": 40,
"total_approved_expenses": 4

I
"exp_details": [
{
"name": "Friedrich-Wilhelm,
"amount": {
"money": 8800,
"name": "egp"
1
I
{
"name": "Sebastian, Bien",
"amount": {
"money": 3365,
"name": "mkd"
1
I
{

"name": "Rosa, Becker",

Langern",

_static/plus.png

_images/scrapqd_ui.png
ScrapQD @ ‘ Prettify ’ ‘ Copy ’ ‘ History

1v query test_query($url: String!, $name: GenericScalar!) {

2v
g
4v
5
6
7
8
9v
10
11
12
13
14
15
16
17

AP WN P

result: fetchCurl: $url) {
name: constant(value: $name)
summary: group {
total_emp_expenses: text(xpath: "//*[@id="emp-exp-tc
total_shown_expenses: text(xpath: "//*[@id="exp-tota
total_approved_expenses: text(xpath: "//*[@id='emp-e
}
exp_details: list(xpath: "//div[@class="card']") {
name: text(xpath: "//div[contains(@class, 'expense-en
amount: group {
money: text(xpath: "//h6[contains(@class, 'expense-
name: text(xpath: "//h6[contains(@class, 'expense-c
X
}
}
}

QUERY VARIABLES

{

}

"url": "http://localhost:5000/sample_page/",
"name": "local-testing"

v i

Hide ‘ < Docs

"data": {
"result": {
"name": "local-testing",
"summary": {
"total_emp_expenses": 309,
"total_shown_expenses": 40,
"total_approved_expenses": 4

I
"exp_details": [
{
"name": "Friedrich-Wilhelm,
"amount": {
"money": 8800,
"name": "egp"
1
I
{
"name": "Sebastian, Bien",
"amount": {
"money": 3365,
"name": "mkd"
1
I
{

"name": "Rosa, Becker",

Langern",

